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ABSTRACT

The problem of anomalous change detection arises when tiwpo&si-

bly more) images are taken of the same scene, but at difféneas. The
aim is to discount the “pervasive differences” that occuotighout the
imagery, due to the inevitably different conditions unddrict the im-

ages were taken (caused, for instance, by differencesuimiiiation, at-
mospheric conditions, sensor calibration, or misredisind, and to focus
instead on the “anomalous changes” that actually take platiee scene.
In general, anomalous change detection algorithms atteonmpodel these
normal or pervasive differences, based on data taken Wifectn the im-

agery, and then identify as anomalous those pixels for wttiehmodel

does not hold. For many algorithms, these models are exqutésgerms
of probability distributions, and there is a class of sug@odathms that as-
sume the distributions are Gaussian. By considering a bradass of dis-
tributions, however, a new class of anomalous change amtesigorithms

can be developed. We consider several parametric familiesaln distri-

butions, derive the associated change detection algasjtlamd compare
the performance with standard algorithms that are basedamsstan dis-
tributions. We find that it is often possible to significantiytperform these
standard algorithms, even using relatively simple nongSiam models.



“Just because everythingdgferent doesn’t mean anything hakanged.”
—Irene Peter

1.0 Introduction

Given two or more images of the same scene, taken at différeas and under different conditions, what
anomalous change detection (ACD) seeks is the “interéstingnges that occurred in the scene. Unfortu-
nately, a mathematics of “interesting” has not been dewsfopo our approach is to identify the rare, or
anomalous changes. The idea is to distinguish them from tipervasive differences that occur throughout
the scenedg., see Fig. 1) due to disparities in illumination, calibratioegistration, look angle, or even the
choice of remote sensing platform. They can also be due toaliand seasonal variations [2] in the scene.

Part of the motivation for this is the intuition that intetiag changes are anomalous. But even when
that intuition fails — after all, “anomalous” is not synongas with “interesting” — then: 1/ since anomalous
changes are rare, one will not at least be overwhelmed byareiting anomalous changes; and 2/ if perva-
sive differences are in fact interesting, they will be laeg@ugh or plentiful enough that the the analyst can
readily find them without the aid of the change detection rdtlym.

Anomalous changes are assumed to be relatively rare, andt oconly a small part of the image
or image archive. Because the nature of the change is notrkbeforehand, algorithms fanomalous
change detection are unsupervised. If the nature of spetiinges of interest were already known (and
if an adequate and representative sample of those changesawalable in the data), then supervised
classification might be employed to identify and delineatese changes.

2.0 Probability distributions

In this section, we will derive ACD algorithms in terms of pability distributions that characterize both
pervasive differences and anomalous changes. An expladieiforanomalous changes seems to defy the
meaning of “anomaly” — it is what Rumsfeld would call an unkmounknown [3] — but a number of existing
algorithms for anomaly detection and anomalous changetitaiehave effectively employed such a model,
even if it was not explicitly stated as part of the model.

The use of probability distributions opens up a number ofomst The most pragmatic option is to
pretend these distributions are Gaussian. This leads foleiolosed-form solutions (and in some cases to
well established algorithms), and requires only that cavere matrices be estimated.

The “purist” option is to make no assumptions about the ithstion at all. Following Vapnik’s dic-
tum [4], we would never model the distribution directly, baostead model the boundary that optimally
separates the distribution of anomalous changes from stiedition of pervasive differences, and base this
model only on the data that are available. As described in [Beand illustrated in Fig. 2, samples from
the pervasive-differences class are given by the datagwhinples from the anomalous-changes class are
given by resampling either from the data or from a uniformtribigtion. This approach does have some
theoretical advantages, but can also be expensive and eisoes problematic on the tails.

We will take a middle ground, and model the data with a nonsSim distribution that can be described
by arelatively modest number of parameters. Once we fit th@seneters to the data, it is straightforward to
plug them into our expressions that involve arbitrary distiions and produce anomalous change detectors.
To the extent that these parametric distributions are bdéscriptors of the observed data, we expect that
the resulting algorithms will better detect anomalous g¢ean In particular, since (detectable) anomalous
behavior occurs on the tails of distributions, it will be iitddo model data with distributions that better
describe the tails.

lIndeed, some would say that “interesting mathematics” isxgmoron.
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Figure 1. Two satellite images of the Camino Redondo neighieood in Los Alamos, New Mexico,
taken roughly six years apart. lllustrated are “pervasive dfferences” (such as brightness, contrast,
shadows and focus) which occur throughout the image, and “asmalous change” (such as the roof
that has evidently been replaced) which occurs only once, dn only a small subset of the pixels.

2.1 Arbitrary distributions

Begin with two (approximately) co-registered images whighwill call the y-image and the-image. Let

x € R% be the spectrum of a pixel in theimage, andy € R% the spectrum of the corresponding pixel in
they-image. Hered, andd, correspond to the number of spectral channels inth@age andy-image,
respective, and that they need not be equal. If we tkeabdy as random variables, then we can write
P(x,y) as a joint probability distribution ovet andy, and remark thaP(x,y) models what we mean by
regular orpervasive differences. This leads to a natural way of identifying tireegular” differences (or
anomalous changes): these are the pixéks y) for which P(x,y) is smallest.

Following Refs. [6, 7, 8], we remark that anomaly detectian be recast as binary classification, where
the second class corresponds to a uniform medgueand the resulting likelihood ratif(x,y)/U(x,y) is
equivalent to the densiti?(x, y). The motivation for a likelihood ratio approach was diseass Refs. [5,
9].

Since our aim is anomalous change detection, versus dtrangimaly detection, we findonditional
anomalousness a useful concept. Instead of looking forl sralales of thejoint distribution P(x,y), we
can instead use theonditional distribution P(y|x) = P(x,y)/P(x). When the pixel valug is unusual
given the value ok, then the conditional distribution will be small. For the ltivariate Gaussian case, it
can be shown [9] that this formalism leads to the chronockrdetector [10]. There is an asymmetry in this
formalism; the conditional distributio®(x|y) = P(x,y)/P(y) leads to a different detector; there are in
facttwo chronochrome detectors.

A framework for anomalous change detection proposed in [Bgfleads to the symmetric likelihood

ratio P )
X,y
P)Py) @

Anomalous changes are associated with small values ofdtlis rwWhenP(x,y) is Gaussian, this ratio
produces the Hyperbolic Anomalous Change Detector (HAGD)named for the hyperbolic boundary
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Figure 2. These figures illustrate the resampling approachdr generating a background distribution

of anomalous changes. Here, th& and y correspond to the two images, and the diagonal swath of
blue dots blue to the pervasive changes. The simulated anofoas changes are shown as red plusses
and are obtained by resampling from the normal data. (a)P(x,y) vs U(x)U(y) gives level curves
of P(x,y) and produces the RX-style straight anomaly detector; herette background data is gen-
erated by drawing from a uniform distribution. (b) P(x,y) vs P(x)U(y) produces a generalized
chronochrome. Here thex component is randomly sampled from they-image, and they component
of the anomalous background is drawn from a uniform distribution. (c) P(x,y) vs U(x)P(y) pro-
duces the “other” generalized chronochrome. (d)P(x,y) vs P(x)P(y) employs the machine learning
framework. Here, x is sampled from they-image, andy is independently drawn from the y-image.
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Figure 3. The four cases shown in Fig. 2 whe®(x,y) is Gaussian. SinceA(x,y) is quadratic, the
contours will be quadratic surfaces: (a) ellipsoid, with the eigenvalues of the covariance matrix all
positive; (b,c) ellipsoidal “tube” with some of the eigenvéues of the covariance matrix strictly equal

to zero; (d) hyperboloid, with some of the eigenvalues negae.



separating regular from anomalous.

These change detection algorithms have different originsgach of them can be treated as a ratio of
probability densities (or “likelihoods”), where we writé(x) andU (y) to represent uniform density in the
x andy space. The negative logarithm of the likelihood ratio igéawhen the likelihood ratio is small, and
provides anomalousness measures:

HACD: A(x,y) = —log P(x,y) + log P(x) + log P(y)
CC:  A(x,y) = —log P(x,y) + log P(x)
CC: A(x,y) = —log P(x,y) + log P(y)
RX:  A(x,y) = —log P(x,y) (2)

2.2 Gaussian distributions

In this subsection, we consider the case that, y) is a multivariate Gaussian. We can subtract the means
so from here on out, we assume that the distributions are@hat the origin; thugix) = 0and(y) = 0.

It is convenient to introduce

X d
z = € R%, 3
] ®
with d = d, + d,;, as the pixel in the “stacked” image. Then, we write the cavere matrix for the stacked
pixel z defined in Eq. (3).
X cT
Z:<zzT>:[C Y} (4)

whereX = (xx ),V = (yy” ), andC = (yx” ). The Gaussian model for the distributionzois given
by
P(z) = (2m)~92|Z|72 exp [—%ZTZ_IZ} . (5)

For Gaussian distributions, small density correspondartgel Mahalanobis distance from the mean, so
we can writeA(z) = z’ Z~'z as a measure of anomalousness. This is the RX anomaly dejtet}o

In the Gaussian case, we can write all of the detectors destin the previous subsection with an
expression of the formi(z) = z” Qz where the quadratic coefficient matrix is given by

x TV x o]t

HACD:  Q=| . v | -] Y} (6)

, x TN X oo

cc: Q__C Yy | | o 0} (7)
'x ¢ [o o

CC: =, v | |, Y‘l] (8)
x ¢cr !

RX:  Q=|7 . (9)

We define the following three scalars for the pixel pairy):

& o= xP X 'x
& = y'Yly (10)
& = z'Z7'a.



Then the anomalousness of change at the pixel(gay) can be expressed as:

HACD: A(x,y) =& — & — &y
CC: Axy) =& -&
CC:  Alxy) =& —§
RX:  A(x,y)=¢& (11)

These four detectors are illustrated for the aése- d, = 1in Fig. 3.

2.3 Parametric non-Gaussian distributions
We will in particular consider elliptically contoured diktutions [12], whereP(z) depends on the covari-
ance matrixZ and can be written
P(z) = |Z|7'/?H(d,£:) (12)

where|Z| is the determinant of/, d is the dimension of, ¢, = z” Z~'z is a scalar that corresponds to
the squared Mahalanobis distancezdb the origin, andH is a positive scalar function. As an example,
H(d,¢) = (2m)~%? exp(—£/2) corresponds to the Gaussian distribution.

If we model our data with an EC distribution, then the anomsitess at pixelx, y) will depend onx
andy only through the scalar values &f, &, and¢. defined in Eq. (10). In particular, we can write

- h(d:w fx) - h(dya Sy)
- h(d:(:7§x)
— h(dy, &)

HACD:  A(x,y) = h(d,£.
CC:  A(x,y) =h(d,&;
CC:  A(x,y) =h(d,&;
RX:  A(x,y) =h(d, &

~— ~— ~— ~—

(13)

whereh(d, &) = —log H(d,&). Note that the RX depends only gn and therefore it is equivalent to the
Gaussian RX.

Kano [13] defines @onsistent family of EC distributions as a set of functio$(d, £), defined for all
positive integersl, with the following property: ifP(z) = |Z|~Y/2H(d,¢.), wherez € R¢ is the stacked
vector in Eq. (3), and. is the scalar defined in Eq. (10); thét(x) = |X|~Y/2H(d,,&,) is the marginal
distribution associated with the projectionzbnto thed, < d dimensional subspace corresponding1to

The Gaussian is an example of a consistent family, and aadgireeen in Eq. (11), leads to a simple
anomalous change detector.

Not all families are consistent. For instance, a populaiaehof EC distribution is given by the general-
ized Gaussian:

H(d7 a, 7, 6) = C(d7 Q, ’Y) exp(—fygo‘) (14)

with ¢(d, o, y) the normalization constant. Here= 1 produces the Gaussian distribution, and< 1 is
a fatter tailed distribution. However the projection of angralized Gaussian to lower dimension does not
produce a generalized Gaussian and ftdisa consistent family [13]. It is, in principle, possible tdésthe
expression in Eq. (14) for a specific valuedfnd derive a consistent family of distributions for smaller
valuesd’ < d, but the corresponding expressions for these other vafuésvil not have the nice form in
Eq. (14).

A generalization of the Gaussian whigha consistent family is the multivariatedistribution [14, 13,

15]:
© (dsv ¢ —(d+v)/2
H(d,l/,f)zr(%) deziy)—2)d/2 <1+y—2> . (15)

This is a fatter tailed distribution than the Gaussian, amkis fatter ag gets smaller. In fact, ag — 2,
the variance diverges. The limit— oo recovers the Gaussian distribution. Not only is Eq. (15)stsiant,
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it is also convenient. It provides a simple closed form eggian for all positive integeré. By substituting
the above multivariate form into Eq. (13), and dropping unimportant additive canss, we obtain the
following expressions for anomalousness of change

EC-HACD: A(x,y) = (dz +dy +v)log (& +v —2) —(dy +v)log (& +v —2)
—(dy +v)log (& +v —2)

EC-CC: A(x,y) = (dy +dy+v)log (&, +v —2) —(dy +v)log (& +v —2) (16)
EC-CC: A(x,y) = (dy +dy +v)log (& +v —2) —(dy +v)log (& +v —2)

Note that as» — oo (and in particular forr > d, + d,), and dividing out an irrelevant factor of, this
expression reduces to the Gaussian limit in Eq. (11).

Another limit of interest i — 2. This simplifies the above expression considerably, in niqaar,
for d, = d, > 2, and again dropping unimportant constants, we can write:

HACD:  A(x,y) = £2/(£:&,)
CC:  A(x,y) =£€/& (17)
CC:  A(x,y) = £2/¢,

3.0 Validation of Anomaly Detection Algorithms

One problem with validating anomaly detection algorithsithat anomalies are rare. While there is indeed
value to anecdotal examples of real anomalies detectedliimnages, it is difficult to do statistical analysis.
And when using these examples for algorithm developmeatgdéimgers of overfitting are considerable.

On the other hand, it is difficult to trust pure simulation;aigery is notoriously difficult to simulate.
Even apart from all the physical issues of radiation tramsfinospheric distortions, sensor noige,, there
is also the problem of simulating “clutter” in remote seigsimagery. It is asking a lot for a simulation to
include the plethora of junk that people leave lying aroundie ground.

Our hybrid approach [16] is to start with real data — which wdturally include whatever noise, distor-
tions, and clutter are in that imagery — and introduce our pamwasive differences and anomalous changes.
The pervasive differences are produced by applying someatgpeto all of the pixels; the anomalous
changes are produced by applying some other operator josttpixel (or in some cases, to a small patch
of pixels [17]), as illustrated in Fig. 4. The “trick” is to gatoy appropriate operators.

3.1 Simulating pervasive differences

One of the best ways to simulate pervasive differences isédwo actual images of the same scene, taken
at different times. One drawback to this approach is thaetheay be anomalous changes in the scene that
are not known. Our opinion is that this is a minor issue, sthose anomalous changes will be small and/or
subtle, and when used for comparing different algorithisfahe algorithms will be up against the same
artifacts. A second drawback is that only one kind of pemeasgiifferences can be examined this way —
the pervasive differences that are exhibited in that paleticimage pair. Both of these drawbacks can be
addressed by simulating the pervasive differences. Faithelation, only a single image of a scene is used,
and from that single image, a pair of images are produced. c@ngfor instance, take that image and add
noise to it, apply some spatial operator (such as smoothing) modify the brightness or contrast of the
image, or spatially translate the image to produced a nigergd pair. For multispectral, and especially
hyperspectral, imagery, once can also “split” the spet@alds. For instance, AVIRIS data has 224 spectral
bands; one can take the first 112 bands and consider thatshefage, and the second 112 bands and call
that the second image. This simulates the situation wheréath images are taken with different cameras.
Finally, one can also take combinations of these.

8



3.2 Simulating anomalous changes

When anomalous changes are simulated, the idea is to mag&ahge only at a single pixel. Having chosen
which pixel that will be, the anomalous change could be sbhimgtlike a brightening or a darkening of the
pixel, but our approach has been to simulate the anomalamgels with another pixel chosen randomly in
the image.

The idea is to distinguish anomalous changes from outrigbtrelies; so at the location where the
anomalous change will be simulated, one replaces that pikelanother pixel taken from elsewhere in the
image. Along these lines, subpixel anomalous changes cgerimrated by taking a linear combination of
the current pixel with the other randomly chosen pixel.

As described, this scheme simulates only a single anomalbasge at a time. For computational
efficiency, once can produce an entire image of anomalousgelsaby scrambling the locations of all the
pixels. In this scenario, one uses a pair of images produgédipervasive difference operator to compute
covariance matrices and to produce a curve of false alamnasat function of ACD threshold. Then, one
applies the ACD algorithm to a pair of images in which the sgmeasive differences are present but for
which one of the image pixels have been scrambled, and osethiseo produce a curve of detection rate
versus the same threshold values. Combining these twos;we produces a ROC curve of detection rate
versus false alarm rate.

One further twist: in our experiments, the pixels are raniggpartitioned into separate “training” and
“testing” sets. The ACD algorithm is trainedd, the covariance matrix and other parameters — such as the
parameter in the multivariatet distribution — are fit) on the training set, and the curvesitiay detection
rate and false alarm rate versus threshold are computecedrsting set. We can re-do this with different
partitions and this provides an ensemble of ROC curves tloatde a sense of how variable the ROC curve
estimates are.

3.3 Results

We applied the simulation framework shown in Fig. 4 to an AlBRmage with 224 channels [18], using
two different pervasive change cases, and two differenedsion reduction schemes. We found in Fig. 5
that HACD outperformed both chronochromes, both of whictum outperformed RX. But using the non-
Gaussian parametric distribution given by the multivariatve found that EC-HACD outperformed HACD
and EC-CC outperformed CC. The valuerofvas fit using the moment method described in Ref. [19].

In an exercise that ran over many months, Eismetred. [2] took a series of hyperspectral images of
the same scene (see Fig. 6). In addition to a grassy field wg#stin the background, four panels were
also present in the scene. These panels exhibited spedtita what was in the rest of the scene and might
be considered anomalous, but because they are in both inthggsare not anomalowhanges. A pair of
images from this experiment, shown in the top two panels @f &provides an example with real pervasive
differences due to seasonal changes from August to OctBbkowing Refs. [2, 1], the data were reduced to
d = 10 bands by taking principal components from the August datad¥e used the simulation framework
to introduce anomalous changes and computed ROC curvesegnasrsFig. 7(a). The results agree with
those seen in the full simulation in Fig. 5: HACD beat CC bext RC-HACD beat HACD, and EC-CC
beat CC.

As a further check, we considered an example with actual afmm changes, as seen in the left two
panels of Fig. 6. These two images are taken two months aatthere are two folded tarps in the second
image, which provides anomalous changes. Although resitsreal anomalies, shown in Fig. 7(b), are
necessarily anecdotal, they still confirm what was obsefgethe simulated anomalies: in the low false
alarm rate regime, the EC-based change detectors outpedatheir Gaussian counterparts.



Original image

Pervasive difference

¥ Anomalous change

Figure 4. Simulation framework: pervasive differences aresimulated with an operator applied to
every pixel in the scene; anomalous changes are simulatedttvionly a single pixel. Our favorite way
to simulate anomalous changes is to move a pixel from one paof the scene to another. That way the
pixel itself is not anomalous, only the change is.

4.0 Summary

The distinction is made between anomalous changes andspardifferences, and each of these two classes
is modelled by a probability distribution. Onearns the distribution for the pervasive difference — this is
provided by the observed data — and one derives from thidrébdison for the anomalous changes. Finally,
from these two distributions, one can produce detectorsiof@lous changes: these find the pixels in an
image pair where the changes are most unusual.

When these distributions are Gaussian, then familiar ACBhous are recovered. But by using a
broader (.e,, non-Gaussian) class of distributions, new ACD algorithras be produced. In particular,
observed data generally exhibits much fatter tails thasdlgiven by Gaussian distributions. Since it is the
tails of the data distribution where the distinction betwe®rmal data and outliers is most difficult, better
models of the tails have the potential to produce better ahpdetection.
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Figure 5. ROC curves for simulated anomalous changes. In thtep two panels, these are based on ten
trials, each one a different in-sample/out-of-sample paition. The bottom panels are based on a single
trial, but use canonical components analysis (CCA) insteadf principal components analysis (PCA)
for dimension reduction. In all cases for this experiment, HACD outperformed CC, which in turn
outperformed RX. But the main pointis that EC-HACD outperfo rms HACD and EC-CC outperforms
CC. We recall that there are two EC-CCs and two CCs, and this iseflected in the bunching of curves
in the figures above
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Taken Aug 25, 2005 Take Oct 14, 2005

Taken Oct 14, 2005, after placing two dark tarps on the grass

Figure 6. Images corresponding to the hyperspectral data teen by Eismannet al. [2].
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